首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   1篇
地球物理   6篇
地质学   1篇
海洋学   1篇
  2015年   1篇
  1999年   1篇
  1997年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1964年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The Ohakune Craters form one of several parasitic centres surrounding Ruapehu volcano, at the southern end of the Taupo Volcanic Zone. An inner scoria cone and an outer, probably older, tuff ring are the principal structures in a nested cluster of four vents.The scoria cone consists of alternating lava flows and coarse, welded and unwelded, strombolian block and bomb beds. The strombolian beds consist of principally two discrete types of essential clast, vesicular bombs and dense angular blocks. Rare finer-grained beds are unusually block-rich. The tuff ring consists of alternating strombolian and phreatomagmatic units. Strombolian beds have similar grain size characteristics to scoria cone units, but contain more highly vesicular unoxidised bombs and few blocks. Phreatomagmatic deposits, which contain clasts with variable degrees of palagonitisation, consist of less well-sorted airfall deposits and very poorly sorted, crystal-rich pyroclastic surge deposits.Disruption by expanding magmatic gas bubbles was a major but relatively constant influence on both strombolian and phreatomagmatic eruptions at Ohakune. Instead, the nature of deposits was principally controlled by two other variables, vent geometry and the relative influence of external water during volcanism. During tuff-ring construction, magma is considered to have risen rapidly to the surface, and to have been ejected without sufficient residence time in the vent for non-explosive degassing. Availability of external water principally governed the eruption mechanism and hence the nature of the deposits. Essentials clasts of the scoria cone are, by comparison, dense, degassed and oxidised. It is suggested that a change in vent geometry, possibly the construction of the tuff ring itself, permitted lava ponding and degassing during scoria cone growth. During strombolian eruptions, magma remaining in the vent probably became depleted in gas, leading to the formation of an inert zone, or crust, above actively degassing magma. Subsequent explosions had therefore to disrupt both this passive crust and underlying, vesiculating magma “driving” the eruption. Cycles of strombolian eruption are thought to have stopped when the thickness of the inert crust precluded explosive eruption and only recommenced when some of this material was removed, either as a lava flow or during phreatomagmatic explosions when external water entered the vent. Such explosions probably formed the unusually fine-grained and block-rich beds in the strombolian sequence.The Ohakune deposits are an excellent example of the products of explosive eruption of fluid, gas-rich basic magma vesiculating under very near-surface conditions. A complex interplay of rate of magma rise, rate and depth of formation of gas bubbles, vent geometry, abundance of shallow external water, wind velocity and accumulation rate of ejecta determines the nature of deposits of such eruptions.  相似文献   
2.
3.
4.
Water samples were collected from the Truckee River-Pyramid Lake system, the Walker River-Walker Lake system, and the Carson River, all located in eastern California and western Nevada, U.S.A., at three different times (i.e., summer 1991, spring 1992, and autumn 1992) over a two year period. The concentrations of As, Na, Cl, PO4, and pH were measured in these river samples and the associated terminal lakes. Arsenic values ranged from below 13 nmol/kg near Truckee, California to 160 nmol/kg at Nixon, Nevada in the Truckee River, from 40 nmol/kg in the headwaters of both West and East Walker Rivers to 270 nmol/kg below Weber Reservoir on the main branch of the Walker River, and from <27 nmol/kg to 234 nmol/kg for the lower Carson River system. Arsenic concentrations in Steamboat Creek (0.91 mol/kg–1.80 mol/kg) in the Truckee River catchment are above the U.S. EPA drinking water maximum contaminant level of 0.67 mol/kg, as are the As concentrations in both Pyramid Lake (1.33 mol/kg–1.57 mol/kg ) and Walker Lake (13.7 mol/kg–18.7 mol/kg). Sources of As for all three rivers include weathering of As-rich rocks and/or regolith and input of high-As geothermal spring waters, both processes primarily, although not exclusively, adding As to the headwater regions of these rivers. Steamboat Hot Springs (29 mol/kg As 54.5 mol/kg), for example, is identified as a source of As to the Truckee River via Steamboat Creek. The high As concentrations in Pyramid and Walker Lakes are likely due to (1) desorption of arsenate from aquatic particulate matter in these high pH waters (9.0 pH 9.5), (2) limited biologic uptake of arsenate, and (3) evaporative concentration of the lake waters. Evaluation of molar PO4}/As ratios of river waters and geothermal spring waters (e.g., Steamboat Hot Springs), indicates that phosphate is substantially enriched in Steamboat Creek as well as the mid to lower reaches of the Walker and Carson Rivers. These regions of each river are dominated by agricultural interests and, additionally, in the case of Steamboat Creek, residential areas and golf courses. Our data strongly imply that phosphate-rich agricultural return flow has likely added P to these streams and, consequently, increased their respective P:As ratios.  相似文献   
5.
6.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake.  相似文献   
7.
Fluid-flow measuring devices intended for full scale use were designed and tested. One device consisted of a rake supporting different types of pitot tubes. This will be used to obtain a velocity profile of the boundary layer of a test ship. The other device was a five-hole pitot tube that was used in a wake survey. The pressure transport medium (i.e. the medium that carried the pressure signal from the pitot tube to the pressure transducer) was air instead of water. This proved to be successful, as the results indicate.  相似文献   
8.
The likely effects on two tree species of a range of scenarios of climatic and atmospheric change expected by the year 2050 are investigated using a climatic mapping program, a simple simulation model and a process-based simulation model. Styrax tonkinensis is a native species for which relatively little information is available. Acacia mangium is an introduced species, which is important for pulp production in several other countries, and for which there is considerable information for growth and utilization. A climatic mapping program is used to show areas which may be suitable for these species under present and predicted conditions. Two simulation models are used to investigate likely effects on productivity of the two species for a range of climatic change scenarios for Hanoi and Ho Chi Minh City. The estimated changes in production are predicted to be relatively small, though uncertainities associated with the simulations are quite high. However, the models highlight areas where more data are needed and also suggest some key regions in Vietnam which would be worth monitoring to detect early signs of the effects of climatic and atmospheric change.  相似文献   
9.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号